X-ray excited optical luminescence detection by scanning near-field optical microscope: a new tool for nanoscience.

نویسندگان

  • Silvia Larcheri
  • Francesco Rocca
  • Frank Jandard
  • Daniel Pailharey
  • Roberto Graziola
  • Alexei Kuzmin
  • Juris Purans
چکیده

Investigations of complex nanostructured materials used in modern technologies require special experimental techniques able to provide information on the structure and electronic properties of materials with a spatial resolution down to the nanometer scale. We tried to address these needs through the combination of x-ray absorption spectroscopy (XAS) using synchrotron radiation microbeams with scanning near-field optical microscopy (SNOM) detection of the x-ray excited optical luminescence (XEOL) signal. This new instrumentation offers the possibility to carry out a selective structural analysis of the sample surface with the subwavelength spatial resolution determined by the SNOM probe aperture. In addition, the apex of the optical fiber plays the role of a topographic probe, and chemical and topographic mappings can be simultaneously recorded. Our working XAS-SNOM prototype is based on a quartz tuning-fork head mounted on a high stability nanopositioning system; a coated optical fiber tip, operating as a probe in shear-force mode; a detection system coupled with the microscope head control system; and a dedicated software/hardware setup for synchronization of the XEOL signal detection with the synchrotron beamline acquisition system. We illustrate the possibility to obtain an element-specific contrast and to perform nano-XAS experiments by detecting the Zn K and W L(3) absorption edges in luminescent ZnO and mixed ZnWO(4)-ZnO nanostructured thin films.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced luminescence of Er+3-doped Zinc-Lead-Phosphate Glass embedded SnO2 nanoparticles

Introduction of the nanoparticles in the bulk glass received a large interest due to their versatile application. The composition of Er+3-doped Zinc-Lead-Phosphate glass samples are prepared by melt-quenching technique. The structural and optical properties of phosphate glass have been examined by x-ray diffraction, fie...

متن کامل

An Xafs and Xeol Study on the Structure and Optical Properties of Cds/porous Silicon (cds/ps) Composite Nanostructure

Electrochemically deposited CdS nanoparticles (NPs) were formed using porous silicon (PS) as a substrate/electrode. The structure, electronic behavior of the CdS NPs and the interaction between CdS-PS were systematically examined using electron microscope, X-ray diffraction and X-ray absorption fine structure (XAFS) at S K-edge and Si K-edge. The optical luminescence behavior of the nanocomposi...

متن کامل

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

An overview of scanning near-field optical microscopy in characterization of nano-materials

Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...

متن کامل

Combining scanning probe microscopy and x-ray spectroscopy

A new versatile tool, combining Shear Force Microscopy and X-Ray Spectroscopy was designed and constructed to obtain simultaneously surface topography and chemical mapping. Using a sharp optical fiber as microscope probe, it is possible to collect locally the visible luminescence of the sample. Results of tests on ZnO and on ZnWO4 thin layers are in perfect agreement with that obtained with oth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 79 1  شماره 

صفحات  -

تاریخ انتشار 2008